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INTRODUCTION

The automatic analysis of signals can be un-
derstood very broadly. In a simplified form, this 
task involves processing the data provided by the 
sensors and determining values that characterize 
the controlled object. In classical control systems 
operating with feedback, these values are used to 
calculate the error signal used to correct the out-
put value of the controlled object [1]. Despite its 
conceptual simplicity, the controller can operate 
on the basis of a sophisticated algorithm that takes 
into account a multidimensional error signal and 
outputs a multidimensional control signal. Exam-
ples of such devices are servo controllers (specifi-
cally in CNC machines), industrial robot control-
lers, and autopilot systems that control aircraft or 
surface ships. In many cases, the complexity of 

the controlled objects makes it necessary to use 
controllers that change their working algorithm. 
It depends on a set of variables describing the ob-
ject and the phenomena in its surroundings. These 
variables should be subjected to a classification 
process [2, 3]. Its result points to the appropriate 
control algorithm in a given situation. 

For example, a classification process can be 
implemented in a system that uses image analy-
sis to check the quality of components being pre-
pared for production. One of the specified classes 
may correspond to components of the right qual-
ity, while subsequent classes may refer to certain 
typical defects of the parts. Another example is 
the vision system used to control an autonomous 
vehicle, where classes have been defined cor-
responding to the different objects appearing in 
front of the camera. Yet another example is the 
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use of the classification process in a telescope 
guiding system. By classifying the object seen by 
the telescope’s camera into one of the prior de-
fined classes, the appropriate guidance algorithm 
can be selected [4].

The third control concept discussed in the ar-
ticle derives from the fact that often, even with 
a very large number of classes, the result of the 
classification process does not sufficiently de-
scribe the variability of the analyzed phenome-
non or object [5]. Controlling a complex object 
or group of them often requires creating its rep-
resentation in a certain knowledge structure. This 
representation is called a model [6]. The process 
of creating a model of a particular object or signal 
and determining its meaning for the main (master) 
system is called automatic understanding [6] (this 
process will be defined more precisely in Section 
4). The process of automatic signal understand-
ing can be used, for example, in a vehicle con-
trol system in which the probability of collision 
with recognized objects is estimated on the basis 
of a physical model describing their movement in 
space. The main goal of this article is to describe 
the methods of automatic signal interpretation 
used in control processes and identify the main 
problems associated with their use.

Three approaches to signal analysis and in-
terpretation will be discussed. They are used in 
three control methods outlined earlier, namely: 
simple closed-loop control, control using the 
classification process, and using the signal under-
standing technique. For each of the approaches, 
the following method of description is adopted. 
A general description is supplemented with three 
examples of its application. They concern the 
following tasks: milling machine control, con-
trolling an autonomous vehicle, and carrying 
out teaching human motor activities. In cases of 
commonly known control methods or tasks, their 
descriptions have been limited to giving general 
concepts only. The third task, due to the nature of 
the controlled object (which is a human) is very 
complex. This will be described in more detail. 
In particular, the methods of signal classifica-
tion used in its implementation will be presented. 
Additionally, an experiment will be described in 
which the effectiveness of the methods used is 
checked.

Between the example tasks described, there 
is a huge spectrum of tasks related to the con-
trol of manufacturing processes, transportation 
processes, and tasks related to supervision and 

monitoring. Proper interpretation of the signals 
involved in controlling these processes is there-
fore of great practical importance. For example, 
only advanced interpretation of motion signals 
allows the construction of systems designed to 
carry out the teaching human motor activities. 
The use of such systems in sports, rehabilitation, 
and teaching professional activities has undeni-
able social significance. The article is structured 
as follows: Sections 2–4 contain descriptions of 
three aforementioned concepts of control, Sec-
tion 5 discusses the properties of the presented 
methods, and Section 6 summarizes the main 
conclusions of the study.

Simple feedback loop control

According to the general idea of working in 
a closed loop, the difference between the desired 
setpoint and the actual output value of the object 
is treated as an error signal. On its basis, using 
a specific algorithm (e.g., PID proportional-inte-
gral-derivative), the controller can bring the out-
put of the object to the desired value [1].

Examples of closed-loop control processes

 • Milling machine
An example of a closed-loop controller is a 

device that controls the movement of a milling 
cutter. It is moved between two defined node 
points at a preset speed. This speed is regulated 
by the PID controller.

 • Autonomous vehicle
Another example of closed-loop operation 

is controlling the travel direction of an autono-
mous vehicle. A simple one-dimensional signal 
of direction can be obtained using a gyroscope 
and magnetometer (the direction of the Earth’s 
magnetic field is used). However, this signal 
can also be calculated by analyzing the image 
of specific objects near the vehicle. An uncom-
plicated solution is to determine the position of 
a special line painted on the road. The calculated 
signal value is used to compute the error value 
used in vehicle control.

 • System for human motor teaching
The third example we are considering in-

volves an automatic system for teaching human 
motor activities [7]. The simplified diagram of 
the system is shown in Figure 1 [8, 9]. The object 
to be controlled is the learner. The input signals 
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of that object are the instructions of the teacher, 
whereas the output is the performed motor activi-
ties. The automatic controller, which plays the role 
of the teacher, assesses this activity and determines 
the means for its correction. Information about it in 
the form of special signals is transmitted to the ob-
ject. It is extremely important that the information 
be provided quickly. Therefore, devices generating 
vibrotactile sensations should be used [9, 10, 11]. For 
example, the sensations can be generated by unbal-
anced mass DC motors, electrodynamic vibrators, 
etc. Due to their role in the discussed system, we will 
call these devices actuators. Motion acquisition can 
be implemented using many types of sensors. For 
example, MEMS (Micro-Electro-Mechanical Sys-
tems) devices, encoders, deflection sensors, vision 
systems, etc. can be used. The fundamental problem 
related to the operation of the discussed system is 
that the controlled object (the person being taught) is 
a non-linear, non-stationary object that uses its own 

algorithms to control the movement. Controlling 
such objects requires the use of advanced techniques, 
which are described in the following chapters. The 
use of relatively unsophisticated conceptual closed-
loop control methods is only possible in simplified 
versions of the learning system. This simplification 
comes down to a significant reduction in the num-
ber of sensors and actuators. An example of such a 
system is the system intended for upper limb reha-
bilitation described in [10]. The other system that 
was created as a result of the master’s thesis [12] 
works similarly (the author of the article was the 
supervisor of this thesis). Figure 2 illustrates its 
general view. The system uses only one sensor, 
which is an encoder that measures the angle, de-
noted by δ, between the arm and forearm. The 
described system works by checking whether the 
angle δ is within the given limits and whether the 
movement is conducted at the appropriate speed 
(the movement parameters are therefore angle δ 

Figure 1. Diagram of the signal flow of the teaching system

Figure 2. Simple system supporting the rehabilitation of the upper limb. The motion 
sensor is an encoder measuring the elbow joint angle, the system is equipped with 

Atmega 328 microcontroller and an actuator based on DC motors
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features are usually referred to the objects visible 
on it. The feature values form the feature vector, 
which is passed to the input of the classification 
algorithm. The described sequence of transforma-
tions is called signal or image recognition. It is il-
lustrated in the Figure 3.

The signal resulting from a certain transfor-
mation can also be called an image. Therefore, 
the terms image and signal will be used inter-
changeably (the set of objects or the set of their 
feature vectors is also often called an image). 
Many classification methods are commonly used, 
for example: methods based on Artificial Neu-
ral Networks (ANNs), based on Support Vector 
Machine (SVM) [13], Hidden Markov Models 
(HMM) [14], minimum distance methods [3, 15], 
syntactic methods [2], and many other methods 
that utilize special solutions [16, 17]. In this study, 
we will briefly discuss only one of the minimum 
distance methods and a method using ANN.

Before that, let us try to answer the question: 
where does the classifier get its knowledge of 
what class number it should assign to the object 
under study? This question leads us to a more pri-
mary problem: how is the division of the set of 
all possible objects into classes made? This divi-
sion includes knowledge of the properties of ob-
jects. An approximate form of this knowledge can 
be obtained from domain experts (experts in the 
field). For instance, in the case of the motor learn-
ing system, these are trainers, doctors, physio-
therapists, etc. The expert defines certain classes 
by pointing to examples of objects belonging to 
them. Each example is a pair, containing a unique 
index of the object (or vector of its features) and 
the label of the class to which that object belongs. 
The set of examples is called a training sequence 
(also called a learning sequence or training set).

Let us return to classification methods. In the 
conceptually simplest method called NN (nearest 
neighbor) [2, 3], a distance function is defined in 
the space of feature vectors of objects (it is also 
possible to define functions describing the similar-
ity between feature vectors). It evaluates how far 

and frequency of periodic motion). When the an-
gle range is exceeded, vibration motors located in 
the band installed on the forearm are activated. The 
system created can be used in rehabilitation exer-
cises. It can also be used by people after injuries 
for whom it is important not to exceed established 
ranges of movement in normal daily life (this ap-
plication of the system was tested practically [12]).

In simple systems intended for rehabilitation, 
examples of which are given above, it is also pos-
sible to adaptively adjust the parameters of the 
taught movement to changes in the biophysical 
characteristics of the patient’s body. For example, 
the system can aim to increase the frequency of 
the movement while maintaining a preset blood 
oxygen saturation level (the saturation is easily 
measured by transmission pulse oximetry).

Control processes carried out 
using classification methods

Unfortunately, changing the parameters of 
the algorithms is not enough to effectively control 
complex and non-stationary objects. As already in-
dicated in Section 1, depending on the state of the 
object, the control algorithm should be changed. 
In order to select the appropriate algorithm, it is 
necessary to carry out the process of classifica-
tion of signals characterizing the object.In general, 
the classification process consists in assigning to 
the object under study the class number (label) 
to which it belongs [2]. In our case, the result of 
the classification (i.e., the class label) points to the 
control algorithm to be executed. Let us outline the 
data processing steps that usually precede the clas-
sification process. Similarly to the simple control 
systems discussed earlier, the signals characteriz-
ing the object are read from the sensors and pre-
processed (it consists, for example, in the filtration 
and normalization). In the next step, features of 
the signal are calculated. These can be parameters 
describing the signal (e.g., amplitude), as well as 
signal samples taken at discrete moments in time 
[8]. In the case of signals describing the image, the 

Figure 3. Stages of the image or signal recognition process
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two feature vectors (characterizing two objects) 
are from each other. For each object in the training 
sequence, the value of the distance between its fea-
ture vector and the feature vector of the unknown, 
tested object is calculated. Then the element clos-
est to the unknown object is selected. This element 
specifies the class of the examined object [2].

In tasks of classifying various types of data 
(time-varying waveforms, two-dimensional im-
ages, etc.), artificial neural networks are very of-
ten used [18, 19]. They are treated as automata 
with multidimensional input and output. The ana-
lyzed data (e.g., pixel values of the recognized 
image, quantized samples of a certain signal, etc.) 
are directed to the first layer of neurons. The neu-
rons of the last layer derive values estimating the 
membership of the recognized image/signal to in-
dividual classes.

An essential problem with the use of ANNs is 
that a growth in the amount of input information 
(increasing the resolution of the analyzed image) 
leads to an increase in the number of neurons in 
the first and subsequent layers and the number of 
connections between them. This leads to a rapid 
increase in the number of parameters (synaptic 
weights) that need to be determined by training 
the network. With a large number of them, net-
work learning algorithms become ineffective. 
The helpful solution is to consider not all possible 
connections between neurons but only connec-
tions in a limited local group of neurons. Simple 
transformations called convolution filters work 
in the manner described. The output value of the 
filter depends on the sum of products of the neu-
ron values in the input of the filter and the cor-
responding parameters – elements of the transfor-
mation matrix [3, 19]. The calculated quantities 

are treated as the values of the neurons in the next 
layer. This layer is called a convolution layer.

Convolutional filters are defined using a very 
small number of parameters, but they can be used 
to detect features in the entire image. By com-
bining subsequent convolutional layers, an im-
age of features is obtained. It may be analyzed 
using MLP (Multilayer Perceptron) networks 
[20]. Convolutional neural networks (CNNs) 
and convolutional recurrent neural networks 
(CRNNs) [21], thanks to their effectiveness, have 
become common tools for solving classification 
tasks in many fields of technology but also in 
biology, medicine, and even in the humanities. 
This is also due to the availability of specialized 
multi-core microcomputers performing network 
operations (e.g., Jetson devices [22]). To summa-
rize the current discussion, let us give a general 
scheme of the system in which the result of the 
classification process is used to determine the ap-
propriate control algorithm [23]. This scheme is 
shown in Figure 4.

Examples of control processes that 
use the classification of objects

 • Milling machine
Consider the movement of a cutter at a con-

stant speed between two nodal points. During this 
time, the vibrations accompanying this process 
are classified. One of the defined classes is the 
class associated with the signals related to the 
tool wear phenomenon. If the vibration signal 
is classified into this class, the system executes 
an algorithm that brings the cutter to the second 
node point, but in such a way that the force acting 
on the tool is limited to a preset, safe value. This 

Figure 4. Selection of the optimal control algorithm as a result of the classification process
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avoids stops between nodal points that result in 
large machining inaccuracies.
 • Autonomous vehicle 

In controlling the vehicle, in addition to main-
taining its direction and speed, it is necessary to 
trigger reactions to events occurring in the vehi-
cle’s surroundings. Thus, in the driving task, the 
concept of using a classification process to recog-
nize these events and then invoke the appropriate 
algorithms becomes obvious.

Assume that in the vision system used for ve-
hicle control, the feature vectors describing ob-
jects include the following quantities: size, color, 
speed, and distance from the center of the road. 
The result of classifying the object seen in front 
of the vehicle determines whether a braking or 
evasive action should be triggered.
 • System for human motor teaching

As an example of the use of the classifica-
tion process in learning motor activities, the task 
of teaching a specific movement exercise during 
learning to swim the butterfly style will be present-
ed. This task is described in detail in the author’s 
work [8]. The exercise consists in moving the 
hands according to a given trajectory and timing. 

The VN-100 MEMS [8], which contain 
3-axis accelerometers and gyroscopes, are used 
as motion capture sensors. The movement per-
formed is usually associated with small devia-
tions from the preset trajectory, which are con-
tinuously corrected by a special teaching algo-
rithm. The input of this algorithm is a multidi-
mensional error signal calculated on the basis of 
the differences between the current movement 
and the given pattern trajectory. 

This trajectory is determined on the basis 
of the so-called shape pattern [8]. This struc-
ture was created in the clustering process (part 
of which is averaging) of several dozen pattern 
signals collected from people performing the 
movement correctly. 

The error vector is expressed in an inertial 
coordinate system related to the Earth. Using the 
operation of rotation, it can be expressed in the 
system related to the considered part of the body 
(signals from MEMS gyroscopes are used for 
calculations). This makes it possible to select the 
appropriate vibration actuator, which provides 
the student with information about the correct 
direction of movement. Unfortunately, during 
practice, there are often situations in which the 
student completely loses timing or makes very 

big mistakes. These situations are recognized 
(classified) by the system accordingly. Follow-
ing this, a second algorithm is automatically in-
voked. This algorithm sends signals to actuators 
previously selected by an expert. The signals 
have a large amplitude and are intended to inter-
rupt poorly performed exercises. The described 
algorithm restores proper synchronization of 
movements and prevents the acquisition of in-
correct motor habits [8]. In the system minimum 
distance k-NNModel method is implemented 
[15]. It is an extension of the described NN 
method. For minimum distance methods, the key 
problem is how to define the distance function 
between the signals. Let us assume that a motion 
signal (e.g., position or acceleration) refers to a 
chosen coordinate of an individual sensor. A mo-
tion signal, denoted by S, may be represented by 
a sequence of probes: S = (s1,s2,...,sn), where: sk is 
the kth probe of the signal and n is the number of 
its probes. The S sequence will be called a one-
dimensional signal. A function that compares 
two one-dimensional signals can be defined us-
ing a simple Euclidean metric:

 𝑟𝑟(𝑃𝑃, 𝑆𝑆) = (1
𝑣𝑣    ∑(𝑝𝑝𝑘𝑘 − 𝑠𝑠𝑘𝑘)2

𝑣𝑣−1

𝑘𝑘=0
)

1
2

                                                        (1)  

 
ℎ(𝑃𝑃, 𝑆𝑆) = min𝑎𝑎∈A,𝑏𝑏∈B,

𝑐𝑐∈C,𝑑𝑑∈D
 𝑔𝑔( 𝑃𝑃, 𝑆𝑆, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑)               (2) 

 

 (1)

where: P = (p1,p2,...,pm), S = (s1,s2,...,sn) are one 
dimensional signals, m,n are numbers of 
their probes, respectively, and υ is the 
number of compared probes, v ≤ m,n.

The result of motion signal classification 
should depend on the shape of the signal, not on 
its amplitude, speed, and the time shift between 
them. Let us introduce some auxiliary function 
g(P,S,a,b,c,d), which returns the value of distance 
r(P,S), however, after linear scaling and shifting 
of the P signal. The parameters a and b refer to 
the scaling and shifting of the signal indices (i.e., 
they relate to the time domain), whereas c and d 
correspond to the scaling and shifting of the sig-
nal values (a detailed description of these opera-
tions is contained in [8, 9]).

Using g function we can define a distance 
function between the signals

 

𝑟𝑟(𝑃𝑃, 𝑆𝑆) = (1
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)

1
2

                                                        (1)  

 
ℎ(𝑃𝑃, 𝑆𝑆) = min𝑎𝑎∈A,𝑏𝑏∈B,

𝑐𝑐∈C,𝑑𝑑∈D
 𝑔𝑔( 𝑃𝑃, 𝑆𝑆, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑)               (2) 

 
 (2)

where: A,B,C,D are sets in which optimal param-
eter values are searched.

The practical application of the described 
method depends on the existence of effective 
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algorithms for calculating the minimum (2). 
The paper [9] presents a sufficiently fast heu-
ristic algorithm.The function h evaluates the 
distance between one-dimensional signals. 
However, in the classification method used, 
multidimensional signals consisting of several 
one-dimensional signals are compared. For this 
purpose, a function is defined whose value is 
the weighted average of the h function values 
calculated on the basis of one-dimensional sig-
nals. The effectiveness of the described learn-
ing system was tested in an experiment involv-
ing 18 people [8]. They were divided into two 
groups. The first group was taught using only 
the algorithm for teaching movement along a 
given trajectory. For the second group, a clas-
sification process was used to select an optimal 
learning algorithm (an algorithm to prevent 
large trajectory errors was also used). Learn-
ing efficiency was evaluated with three quanti-
tative parameters, denoted by E1, E2, and E3. 
The first parameter estimates the accuracy of 
the movement learned by the person (accura-
cy is measured by the RMSE coefficient cal-
culated from an error signal of position) [8]. 
The second parameter is computed in a similar 
way, but it is calculated only in signal ranges 
in which the student does not make random er-
roneous movements. A classification process is 
used to determine these ranges. The third pa-
rameter estimates the effectiveness of learning. 
It depends on the values of E2 parameter cal-
culated before and after learning. Calculating 
the average values of the parameters in each 
group of participants allows us to compare the 
effectiveness of the two teaching methods. For 
the group taught by one algorithm, the follow-
ing parameter values were obtained: E1 = 95.4, 
E2 = 95.8, E3 = 70.3 (values are in millimeters). 
The results for the second group (in which the 
classification process was used) are as follows: 
E1 = 71.1, E2 = 69.1, E3 = 44.0 [8]. The results 
of the experiment were statistically analyzed 
using Student’s T-test (twosample location 
test). Based on it, for all parameters: E1, E2, 
E3, with error probability: 0.049, 0.046, 0.042 
respectively, we must reject the hypothesis that 
the effectiveness of both teaching methods is 
the same [8]. It should be assumed that the 
learning efficiency is higher for the method that 
uses the classification process. Similar results 
were obtained using the system for teaching 
movement synchronization [9].

Usage of signal/image 
understanding techniques

The output of the classification system is 
the label of the class to which the tested object 
belongs. This result is transferred to the master 
(main) system, which performs further actions, 
e.g., controlling the vehicle, conducting the 
patient’s rehabilitation process, etc. However, 
there are some difficulties with this simple way 
(through the label) of representing the result 
of the interpretation process. In order to ac-
curately determine the response of the master 
system, the number of object features must be 
increased. Consequently, each combination of 
feature values should be represented by a sepa-
rate class (potentially, the number of classes 
goes to infinity [5, 23]). This leads to a rapid 
increase in the required number of elements in 
the learning sequence.

The subsystem that performs the interpreta-
tion should provide information about the mean-
ing of the observed object (or phenomenon) for 
the master system. This meaning should make it 
possible to determine the reactions of the master 
system. In other words, the subsystem perform-
ing the analysis must provide a semantic value 
of the phenomenon being analyzed [24]. To do 
this, the subsystem must have knowledge of the 
observed phenomena (we will describe one form 
of this knowledge later).

The semantic value can be conveyed by con-
tractual symbols or sentences in a certain lan-
guage. For example, in the control system of 
an autonomous vehicle, the following seman-
tic value may be derived: an object on the side 
of the road has been identified; do not start the 
braking procedure (e.g., due to the previously 
estimated low adhesion of the road surface and 
the low probability of a collision). Let us as-
sume that we have a certain general knowledge 
structure in which information about the prop-
erties of the analyzed objects and the relation-
ships between them can be represented. The 
representation of an exact object in the knowl-
edge structure is called a model of the object [6]. 
Contrary to a simple description of the object, 
its model makes it possible to determine hidden 
object properties and its behavior. Finally, based 
on the model, we can determine its meaning for 
the processes taking place in the master system. 
Consequently, the semantic value of the object 
can be established.



86

Advances in Science and Technology Research Journal 2024, 18(3), 79–91

The process of model creation, 
image understanding

Creating a model of a real object is a difficult 
task. It is necessary to transfer from a relatively 
easily determinable description of the real object 
(e.g., using its features) to an often abstract and 
symbolic representation of it in the knowledge 
structure. We will proceed in reverse order. First, 
some hypothetical model (i.e., hypothetical ob-
ject representation) will be built in the considered 
knowledge structure. Then, in turn, a description 
of an object will be created, the representation of 
which would be this hypothetical model (the de-
scription of the hypothetical object can be given 
in the form of a feature vector). In the next step, 
the created description is compared with the de-
scription of the real object being analyzed. If these 
descriptions match, the hypothetical model is the 
representation of the real object under study. In 
other words, the model matches the real object. 
If not, the model should be modified and the 
match rechecked. In the strategy presented here, 
we start with some initial hypothesis determining 
the model of the unknown object (objects). Then, 
in subsequent iterations, this hypothesis is modi-
fied to obtain the best fit [6]. The model modifi-
cation process is therefore performed in a closed 
loop. The presented way of creating a model and 
determining the output semantic value is called 
image (or object, signal) understanding [5, 6]. It 

is schematically depicted in the Figure 5. Despite 
the fact that new, advanced versions of the de-
scribed methods are being developed, there is no 
complete agreement on what it means to under-
stand an image or signal. It is most often assumed 
that the process of image or signal understanding 
contains cognitive mechanisms of information 
processing, including reasoning, searching the 
knowledge structure, its extension, and generat-
ing hypotheses [5, 6, 25]. Referring to this defini-
tion, let us specify the concept of image (signal) 
interpretation already used in this study. We will 
understand this term as a general process of creat-
ing an image representation in a certain knowl-
edge structure and deriving its semantic value. 
However, we will not formulate any requirements 
(as in the case of image understanding) regard-
ing the data structures used and the methods em-
ployed (e.g., the process can run in an open loop).

Using an ontological description

Knowledge about the examined objects can be 
stored in various data structures. The most com-
mon are graphs whose nodes refer to the compo-
nents of the image and edges represent the rela-
tionships between them. Below, we will briefly 
present the knowledge structure in which certain 
generalized beings called concepts are utilized. 
The term concept is often referred to as class, cat-
egory, or type [6, 16, 26]. It is assumed that there 
is a fundamental relationship between concepts 

Figure 5. General scheme of the process of image understanding (objects 
and data structures are placed in the rounded rectangles)
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and objects called membership. It is postulated 
that objects belonging to the same concept have 
similar properties. The set of defined concepts 
and relationships between them is the basis for 
the definition of the ontological model. It is also 
called domain ontology or, briefly, ontology [27, 
28]. The strict definition of the ontology depends 
on the application domain and the formalism ad-
opted [27, 29]. In a knowledge system defined us-
ing ontologies, operations on general and abstract 
forms of data can be clearly defined. The fact that 
an object belongs to a concept (class) implies that 
object transformations defined in a given class can 
be performed on it. It is also possible to predict 
the values of its selected features even when it is 
not possible to perceive them on the basis of the 
signals. However, building an ontological model 
is a complex task. It requires making some initial 
assumptions and defining a set of basic concepts 
and relationships. These activities require the sig-
nificant involvement of experts.

In some situations, for relatively simple con-
cept structures, the ontology creation process 
can be carried out automatically. The creation of 
an ontology model can then be based on the ob-
jects and relations between them observed in a 
given reality (learning by observation) [30]. For 
example, the structures of concepts (classes) can 
be automatically created in the inductive process 
of building the so-called micro-ontology [29, 31, 
32]. In the ontological model, a certain semantic 
value can be assigned to objects and concepts. 
The determination of the resulting (overall) se-
mantic value of an image is done through a pro-
cess of inference. It may consist in the task of 
creating or finding a specific object or objects 
that belong to a certain concept. In this case, the 
semantic values of these specific objects deter-
mine the semantic value of the entire image.

Hybrid systems of signal recognition 
and understanding

The presented schemes for image recogni-
tion and understanding represent, despite their 
numerous variants, coherent ideas. However, 
modern applications often use intermediate solu-
tions and those that only partially correspond to 
the types presented. In this context, the follow-
ing tasks can be mentioned: understanding the 
functionality, events understanding [33], action/
activity understanding [3, 33, 34], and semantic 
segmentation [6, 35] (it should be noted that the 
term understanding appearing in the presented 

list is used quite freely, including methods that 
do not correspond to the introduced concept of 
images understanding).

As a result of advanced analysis of signals/
images, data structures are created that can be 
considered as an extended description of the con-
trol process. These can be used to build a seman-
tic description of the controlled object and the 
entire control process. For example, in the pro-
cesses preceding the classification of the move-
ment performed by the rehabilitated person, the 
values of frequencies and amplitudes of motion 
are calculated. The moments of starting particular 
phases of movement of selected parts of the body 
are also calculated. Based on them, it is possible 
to derive commands that have semantic value re-
garding the correctness of the exercise.

Examples of control processes carried out with 
the help of signal understanding techniques

Signal and image understanding techniques 
are still under development. An example of an ad-
vanced, largely general system using ontological 
models is the CAREER [36] project (University 
of Michigan). However, the use of such systems 
for real-time control still faces many technical 
problems. In most cases, we can only consider 
the implemented systems as hybrid. The follow-
ing examples illustrate this situation.

Milling machine

Suppose a vision system is used to analyze 
chips resulting from machining [37]. Based on 
the image of the chips, their features (e.g., thick-
ness, curl radius) can be determined. They form 
a feature vector that can be classified. There are 
several basic classes of chips. If the chips belong 
to a certain class, selected chip features can be 
used to determine or adjust machining param-
eters such as speed and feed. These parameters 
are calculated using relatively uncomplicated 
mathematical models. The classification process 
is auxiliary. Its result is used to choose the proper 
method of modeling the machining process, not 
to select the appropriate control algorithm.

Autonomous vehicle

Let us assume that an image captured by the 
camera of the autonomous vehicle is preprocessed 
and segmented. This process involves separating 
consistent areas from the image that correspond to 
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the basic, primitive objects. Each object is char-
acterized by a feature vector, e.g., average bright-
ness, size, color, elongation factor, etc. As a result 
of further data processing, objects are stored in 
an ontological structure. It contains not only fea-
ture vectors, but also information about classes 
of objects and relationships between them. The 
ontological structure also includes complex, com-
pound objects. They consist of primitive objects 
that are connected by appropriate relations. The 
complex objects can form further compound ob-
jects, and so on [26, 29, 31]. Specifically, an object 
representing an animal (such as a horse) consists 
of a head, a torso, and legs properly positioned in 
relation to it. Suppose a particular object is repre-
sented in the ontological structure. There is also 
a previously created class of such objects. The 
class is accompanied by an attribute that allows 
to assess the probability of entering the roadway 
of an object (animal) belonging to this class. This 
value, along with the object’s distance from the 
road and its speed, makes it possible to determine 
the semantic value. It may be as follows: start the 
braking process immediately .

System for human motor teaching

Automatic systems for learning motor activi-
ties in which a model of the analyzed phenom-
enon or object would be actively created, accord-
ing to the author’s knowledge, do not yet exist. 
However, there are systems that can be consid-
ered as hybrid [23]. The system described in [9] 
uses the classification process to select the learn-
ing algorithm and, at the same time, creates an 
extended description of the learning process. The 
information contained in it allows to derive re-
sults that can be considered as a semantic value. 
For example, the derived semantic values can be 
a simple command: increase the power in the first 
phase of the kick .

RESULTS AND DISCUSSION

The result of the classification process is a 
single decision variable (class label) that can be 
used to select the appropriate control algorithm. 
This solution is conceptually transparent and 
gives great possibilities for modifying the work 
of the entire system, including changing the tem-
porary goal of the control.

Carrying out the classification process makes 
it possible to recognize and take into account the 
wide context of the system’s operation and cap-
ture the key features of the controlled object. In 
the described solution, advanced, improved for 
decades, methods of signal analysis and clas-
sification can be applied. Effective methods of 
acquiring expert knowledge (e.g., based on a 
learning sequence) can also be used. The method 
of operation of the system presented above is 
one of the possible solutions. A more compre-
hensive description of the control process can 
be obtained by running several classification 
processes in parallel, each using a different cri-
terion. The resulting set (vector) of decision vari-
ables can determine not only the algorithm per-
formed but also the values of its parameters and 
even the output value controlling the object. An 
extended description of the control process can 
be used for a similar purpose. It is worth noting 
here that many methods usually used for classi-
fication are also able to determine the values of 
variables controlling the process. For example, 
a neural network can be trained in such a way 
that it directly outputs the value that controls the 
object [38]. An even more complete picture of 
the control process, along with a prediction of 
the object’s behavior, can be obtained using its 
model and image understanding techniques. This 
makes it possible to construct control algorithms 
that achieve goals that are distant in time. Let 
us note here a possibility that is related in some 
way to the remark given earlier. A neural network 
capable of mapping any function can, of course, 
output a semantic value encoded in a certain way. 
The master system can use this value to control 
the object. An important problem is the acquisi-
tion of knowledge by the system. 

In the methods using the classification pro-
cess, this means the need to train the classifier 
using a learning sequence that is created with the 
participation of an expert in a given field. For the 
methods of automatic understanding of signals, 
it is necessary to build knowledge (e.g., in the 
form of an ontology) also with the participation 
of experts. In order for expert knowledge to be 
effectively transferred, the methods used in the 
system should be, at least to some extent, un-
derstandable by experts. Therefore, the methods 
should be characterized by the property of ex-
plainability (interpretability). In simplification, 
this term means the ability to provide a human-
understandable explanation of the operation of 
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the method or system (there is a slight difference 
in the meaning of the terms explainability and in-
terpretability, however, they are often used inter-
changeably) [39, 40].

Unfortunately, the explainability of most of 
the methods used to classify and build the struc-
ture of knowledge is low. In the case of neural 
networks, it should even be said that it is ex-
tremely low (network operation depends on 
thousands of synaptic weights). For this reason, 
many software tools are created that facilitate the 
interpretation of the network functioning (e.g., 
CNN Explainer [39]).

A summary of our considerations is illustrated 
in Figure 6. It shows very simplified diagrams of 
the approaches discussed and their main features.

CONCLUSIONS

In the article, apart from presenting ex-
amples of the classic approach to control, the 
concepts of using the classification process and 
techniques of signal understanding in the con-
trol process are described. The application of 
several control algorithms, selected in the pro-
cess of classifying signals describing the object, 
makes it possible to change the goal of control 
depending on the current state of the object. The 
described method was successfully used in a dif-
ficult task of learning human motor activities. 

The selection of an algorithm or a change in the 
way it works can also be the result of the process 
of automatic signal understanding. 

The use of a model describing the object and 
its surroundings also makes it possible to predict 
the long-term effects of the control. Consequent-
ly, distant goals of the control can be realized. The 
condition for the effective use of the described 
advanced signal interpretation techniques is the 
efficient acquisition of knowledge by the system. 
Knowledge is gained from experts, who should 
understand many aspects of the system’s opera-
tion. Accordingly, the methods used should have 
the property of explainability. 

Solving the problems identified in the paper 
is a certain challenge for the future. Particularly 
relevant in this context are:
 • creating convenient software tools for 

building simplified domain ontologies used 
in control systems,

 • development of specialized programs dedicat-
ed to control systems, explaining the operation 
of the applied methods of signal interpretation 
(similar to the CNN Explainer program).
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